

Chapter 4: Forecasting

Learning Objectives

- Understand the three-time horizons and which models apply for each use
- Explain when to use each of the four qualitative models
- Understand the various quantitative models, including the naive, moving average, exponential smoothing, and trend methods
- Compute three measures of forecast accuracy
- Develop seasonal indexes
- Conduct a regression and correlation analysis

Forecasting and Demand Planning

- <u>Forecasting</u>: the art and science of predicting future events
 - Many firms integrate forecasting with supply chain and capacity management systems to make better operational decisions
 - Accurate forecasts are needed throughout the supply chain, and are used by all functional areas of the organization, including accounting, finance, marketing, operations, and distribution
- <u>Demand planning software</u>: systems that integrate marketing, inventory, sales, operations planning, and financial data to synchronize the supply chain

Forecasting and Demand Planning

- <u>Planning horizon</u>: the length of time on which a forecast is based
- Short range forecasts = Up to 1 year, but generally less than 3 months
 - $\circ~$ Ex: Purchasing, job scheduling, workforce levels, inventory
- Medium range forecasts = 3 months to 3 years
 - Ex: Sales & production planning, budgeting
 - Long range forecasts = 3+ years
 - Ex: Facility locations, R&D, new product launches

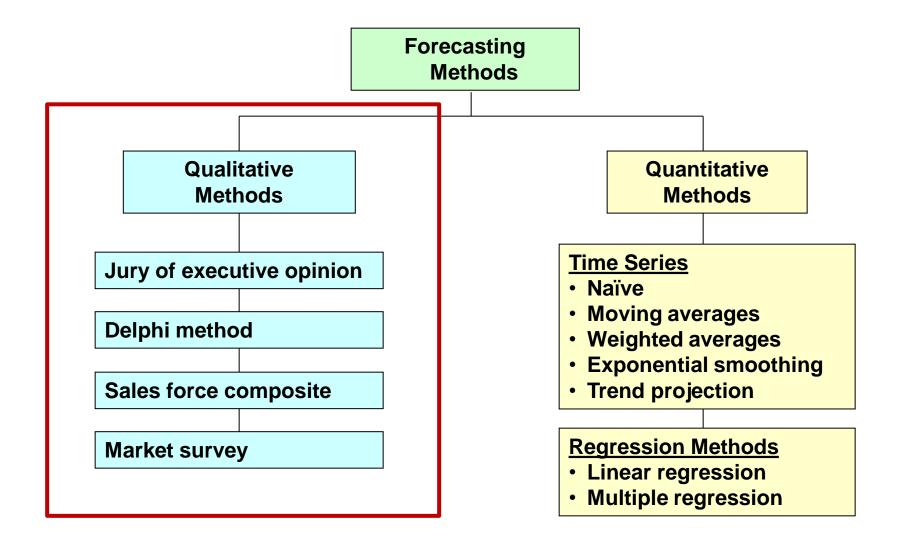
Operations & Supply Chain

Universitv

Types of Forecasts

- <u>Economic forecasts</u>: planning indications that are valuable in helping organizations prepare medium- to long-range forecasts
 - Address business cycle inflation rate, money supply, housing starts, etc.
- <u>Technological forecasts</u>: long-term forecasts concerned with the rates of technological progress
 - Impacts development of new products
- <u>Demand forecasts</u>: projections of a company's sales for each time period in the planning horizon
 - Forecasts of demand drive decisions in many areas, examples:
 - Supply-Chain Management good supplier relations, advantages in product innovation, cost and speed to market
 - Human Resources hiring, training, laying off workers
 - Capacity capacity shortages can result in undependable delivery, loss of customers, loss of market share

Features of Forecasts


- Assumes historical system: past → future
- Forecasts are rarely perfect because of randomness
- Forecasts more accurate for groups vs. individuals
- Forecast accuracy decreases as time horizon increases

Eight* Steps in Forecasting

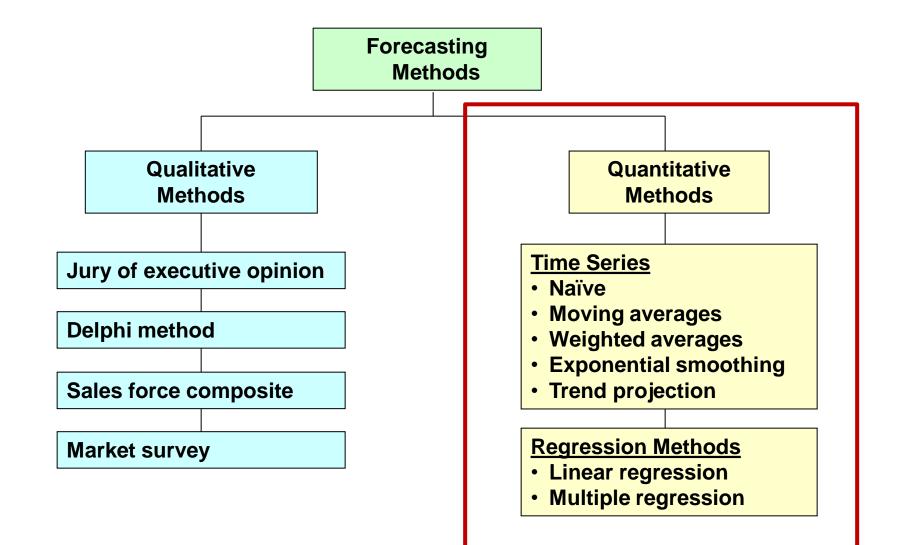
- 1. Determine the use of the forecast
- 2. Select the items to be forecast
- 3. Determine the time horizon of the forecast
- 4. Select the forecasting model(s)
- 5. Gather the data
- 6. Make the forecast
- 7. Validate and implement results
- * The text only gives the first seven steps, but we also need to:
- 8. Monitor the forecasting performance

Basic Forecasting Methods

Qualitative (Judgmental) Forecasting

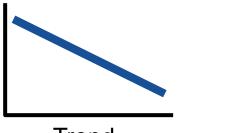
Operations & Supply Chain University

- <u>Qualitative forecasts</u>: forecasts that incorporate such factors as the decision maker's intuition, emotions, personal experiences and value system
 - <u>Jury of executive opinion</u>: a forecasting technique that uses the opinion of high-level managers to form a group estimate of demand
 - <u>Delphi method</u>: a forecasting technique using a group process that allows experts to make forecasts
 - <u>Sales force composite</u>: a forecasting technique based on salespersons' estimates of expected sales
 - <u>Consumer Market Survey</u>: a forecasting method that solicits input from customers or potential customers regarding future purchasing plans


Examples: Jury of Exec opinion = the Fed Delphi method = Take a poll, narrow it down Sales force composite = ask Bob in Sales Consumer Survey = cold call or email you

Qualitative (Judgmental) Forecasting

Operations & Supply Chain University


- When no historical data is available, only judgmental forecasting is possible
- The major reasons for using judgmental methods are:
 - Greater accuracy (*if there is no historical data)
 - Ability to incorporate unusual or one-time events
 - The difficultly of obtaining the data necessary for quantitative techniques

Basic Forecasting Methods

Decomposition of a Time Series

- <u>Time series</u>: a forecasting technique that uses a series of *past* data points to make a forecast
 - Analyze by breaking down into components and projecting them forward – there are four components:
 - 1. <u>Trend</u>: the underlying pattern of growth or decline
 - 2. <u>Cyclical patterns</u>: regular patterns in a data series that take place over long periods of time
 - 3. <u>Random variation (or noise)</u>: unexplained deviation from a predictable pattern
 - 4. <u>Seasonal patterns</u>: repeatable periods of ups and downs over short periods of time

Trend

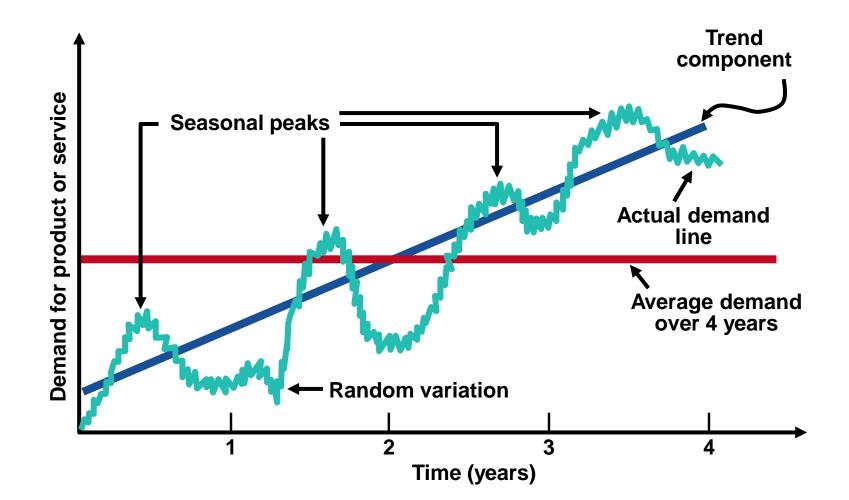
Cycle

Operations & Supply Chain

Universitv

Random Variation

Seasonal Patterns



• There are six common seasonality patterns

Period Length	riod Length "Season" Length Number of "Seasons" in Patt	
Week	Day	7
Month	Week	4
Month	Day	30
Year	Quarter	4
Year	Month	12
Year	Week	52

Demand with Growth Trend and Seasonality Over Four Years

Forecasting in Practice

- Managers use a variety of judgmental and quantitative forecasting techniques
- Statistical methods alone cannot account for such factors as sales promotions, competitive strategies, unusual economic disturbances, new products, large one-time orders, natural disasters, or labor complications
- The first step in developing a practical forecast is to understand the purpose, time horizon, and level of aggregation
- Different forecasting methods require different levels of technical ability and understanding of mathematical principles and assumptions

Naïve Forecasts

- Naïve forecast: The forecast for any period equals the previous period's actual value
- Benefits
 - Simple to use
 - Virtually no cost
 - Quick and easy to prepare
 - Data analysis is nonexistent
 - Easily understandable
 - Can provide high accuracy
 - Can be good starting point

Uh, give me a minute... We sold 250 wheels last week... So next week we should sell _____ wheels? **Operations & Supply Chain**

University

Moving Average Forecasts

- <u>Moving Average (MA)</u> A technique that averages a number of recent actual values, updated as new values become available
- MA methods work best for short planning horizons when there is no major trend, seasonal, or business cycle pattern
- As the value of "n" increases, the forecast reacts slowly to recent changes in the time series data

Moving average = MA(n) = $\frac{\Sigma \text{ Demand in previous n periods}}{n}$

Where:

n = number of periods (data points) in the moving average

Moving Average Example

- Donna's Garden Supply wants a 3-month, MA(3) and a 6-month, MA(6) moving average forecast for storage sheds, including a forecast for next January
- Storage shed sales are shown below

Month	Actual Sales
January	10
February	12
March	13
April	16
May	19
June	23
July	26
August	30
September	28
October	18
November	16
December	14
January	

MONTH	ACTUAL SHED SALES	3-MONTH MOVING AVERAGE
January	10	
February	12	<u> </u>
March	13	
April	16	$(10 + 12 + 13)/3 = 11^{2}/_{3}$
Мау	19	(12 + 13 + 16)/3 = 13 ² / ₃
June	23	(13 + 16 + 19)/3 = 16
July	26	(16 + 19 + 23)/3 = 19 ¹ / ₃
August	30	$(19 + 23 + 26)/3 = 22 \frac{2}{3}$
September	28	$(23 + 26 + 30)/3 = 26 \frac{1}{3}$
October	18	(26 + 30 + 28)/3 = 28
November	16	$(30 + 28 + 18)/3 = 25 \frac{1}{3}$
December	14	(28 + 18 + 16)/3 = 20 ² / ₃

Moving average = MA(n) = $\frac{\Sigma \text{ demand in previous n periods}}{r}$

Month	Actual Sales	MA(3) Forecast
January	<mark>10</mark>	
February	<mark>12</mark>	
March	<mark>13</mark>	
April	16	<mark>11.67</mark>
May	19	13.67
June	23	16.00
July	26	19.33
August	30	22.67
September	28	26.33
October	<mark>- 18</mark>	28.00
November	<mark>16</mark>	25.33
December	<mark>14</mark>	20.67
January		<mark>16.00</mark>

n

A = Actual Sales (Demand) F = Forecast Sales

F(April) = [A(Mar)+A(Feb)+A(Jan)]/3F(April) = [13+12+10]/3 = 11.67

F(May) = [A(Apr)+A(Mar)+A(Feb)]/3F(May) = [16+13+12]/3=13.67

F(Jan) = [A(Dec)+A(Nov)+A(Oct)]/3F(Jan) = [14+16+18]/3 = 16.00

Donna's Garden Supply: MA(6)

Month	Actual Sales	MA(6) Forecast
January	<mark>10</mark>	
February	12	
March	13	
April	<mark>16</mark>	
May	<mark>19</mark>	
June	23	
July	26	<mark>15.50</mark>
August	30	18.17
September	28	21.17
October	18	23.67
November	16	24.00
December	14	23.50
January		22.00

A = Actual Sales (Demand) F = Forecast Sales

Moving average = MA(n) =

Operations & Supply Chain

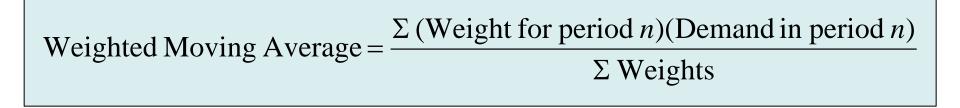
University

 Σ demand in previous n periods

n

F(July) = [A(Jun)+A(May)+A(Apr)+A(Mar)+A(Feb)+A(Jan)]/6

F(July) = [23+19+16+13+12+10]/6 = 15.5


F(Jan) = [A(Dec)+A(Nov)+A(Oct)+A(Sep)+A(Aug)+A(Jul)]/6

F(Jan) = [14+16+18+28+30+26]/6 = 22.00

Weighted Moving Average Forecasts

Operations & Supply Chain University

- <u>Weighted Moving Average (WMA)</u>: more recent values in a series are given more weight in computing the forecast
- The moving average formula implies an *equal weight* being placed on each value that is being averaged
- Choosing weights
 - Experience and trial-and-error are the simplest ways
 - Generally, the most recent past is the best indicator of what to expect in the future, and therefore, should get higher weighting
 - Typically, the weights are given

Weighted Moving Average Example

- Operations & Supply Chain University
- Donna's Garden Supply wants to forecast storage shed sales by weighting the past 3 months with more weight given to recent data to make them more significant

Weighted Moving Average = $\frac{\Sigma \text{ (Weight for period } n)(\text{Demand in period } n)}{\Sigma \text{ Weights}}$

Month	Actual Sales
January	10
February	12
March	13
April	16
May	19
June	23
July	26
August	30
September	28
October	18
November	16
December	14
January	

<u>Period</u>
Last month
Two months ago
Three months ago
Sum of weights

Donna's Garden Supply: WMA

vv eighted	moving average	· —	ΣV
Month	Actual Sales	WMA Forecast	
January	10		
February	12		
March	13		<u>W</u>
April	16	<mark>12.17</mark>	
May	19	14.33	
June	23	17.00	
July	26	20.50	
August	30	23.83	
September	28	27.50	F(Ap
October	<mark>- 18</mark>	28.33	F(Ap
November	<mark>16</mark>	23.33	י (רף
December	14	<u>18.67</u>	
January		<mark>15.33</mark>	F(Ja

Weighted moving average = $\frac{\sum (\text{Weight for period } n)(\text{Demand in period } n)}{\sum n}$

 Σ Weights

A = Actual Sales (Demand) F = Forecast Sales

Period
Last month
Two months ago
Three months ago
Sum of weights

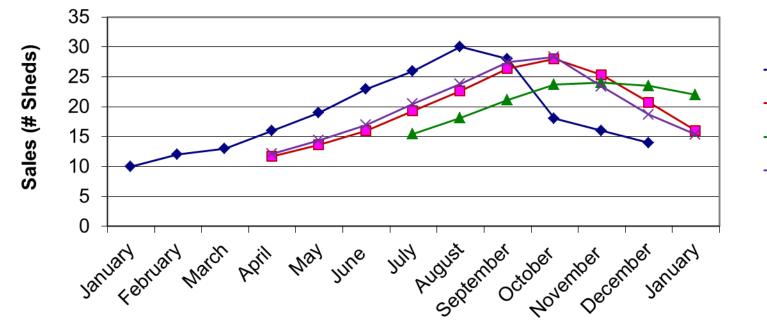
F(April) = [3*A(Mar)+2*A(Feb)+1(A-Jan)]/6

F(April) = [(3*13) + (2*12) + (1*10)]/6 = 12.17

F(Jan) = [3*A(Dec)+2*A(Nov)+1*A(Oct)]/6

F(Jan) = [(3*14) + (2*16) + (1*18)]/6 = 15.33

Potential Problems with Moving Averages



- Increasing "n" smooths the forecast but makes it less sensitive to changes
- Does not forecast trends well, they lag the actual values
- Requires extensive records of past data

Moving Average and Weighted Moving Average

Month

Exponential Smoothing

- <u>Exponential Smoothing</u> a weighted moving average forecasting technique in which data points are weighted by an exponential function
- The forecast "smooths out" the irregular fluctuations in the time series
- Note: If starting forecast is not given, assume F₁=A₁

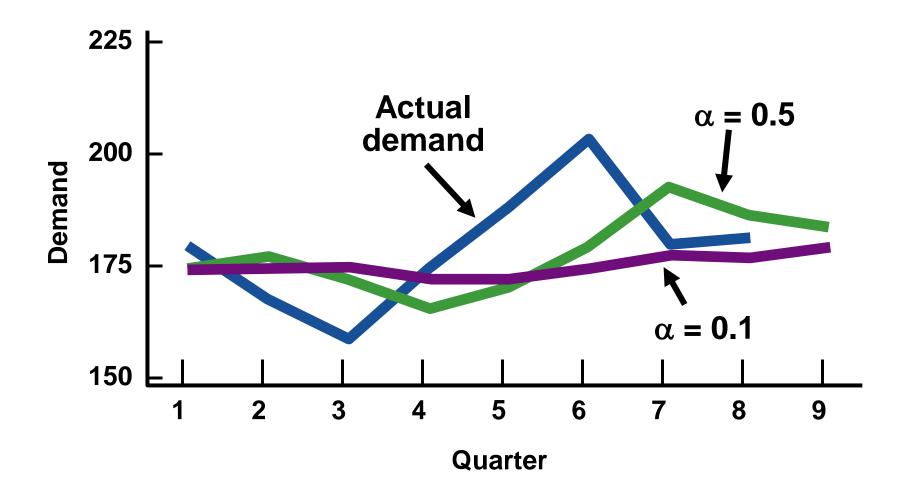
$$F_t = F_{t-1} + \alpha(A_{t-1} - F_{t-1})$$

Where:

F_t

 A_{t-1}

α


- = New forecast for period t
- F_{t-1} = Previous period's forecast
 - = Previous period's actual demand
 - = ("alpha") the smoothing constant ($0 \le \alpha \le 1$)
- (A F) = the error term (Actual Forecast)

Effect of the Smoothing Constant

- Choosing the smoothing constant, α:
 - The closer its value to zero, the *slower* the forecast will be to adjust to forecast errors (the greater the smoothing)
 - The closer its value to one, the greater the responsiveness and the less the smoothing
 - The objective is to obtain the most *accurate* forecast no matter the technique
 - We generally do this by selecting the model that gives us the lowest forecast error

Impact of Different α

Exponential Smoothing Example

 In January, a car dealer predicted February demand for 142 Ford Mustangs. Actual February demand was 153 cars. Using a smoothing constant chosen by management of α = 0.20, the dealer want to forecast March demand using the exponential smoothing model.

$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

Previous forecast = F(t-1) = F(Feb) = 142 Previous Actual demand = A(t-1) = A(Feb) = 153 Smoothing constant α = 0.20 March Fcst = F(Feb) + α [A(Feb) - F(Feb)] = 142 + 0.2[153 - 142] = 142 + 2.2 = 144.2 ≈ 144 cars

Operations & Supply Chain

University

Measuring Forecast Error

<u>Forecast error</u> is the difference between the observed value of the time series and the forecast, or A_t – F_t

Forecast error = Actual demand - Forecast value = $A_t - F_t$

 Mean Absolute Deviation Error (MAD) - how much the forecast missed the target:

$$MAD = \frac{\Sigma |Actual - Forecast|}{n}$$

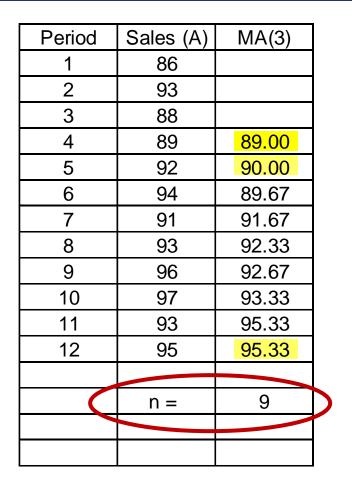
 Mean Square Error (MSE) – the square of how much the forecast missed the target:

$$MSE = \frac{\Sigma(Forecast \, errors)^2}{n}$$

• Mean Absolute Percentage Error (MAPE) - the average percent error:

$$MAPE = \frac{\sum_{i=1}^{n} 100 |Actual_{i} - Forecast_{i}| / Actual_{i}}{n}$$

Forecast Errors and Accuracy


- A major difference between MSE and MAD is that MSE is influenced much more by *large* forecast errors than by *small* errors (because the errors are squared)
- MAPE is different in that the measurement scale factor is eliminated by dividing the absolute error by the time-series data value. This makes the measure easier to interpret
- The selection of the best measure of forecast accuracy is not a simple matter
 - Forecasting experts often disagree on which measure should be used

Forecast Error Solved Problem

• Develop:

- 1. Three-period moving average forecast
- 2. Four-period movingaverage forecast
- 3. Exponential smoothing forecast with $\alpha = 0.5$
- Compute the MAD, MAPE, and MSE for each of the three forecasts
- Which method provides a better forecast?

Period	Sales (A)	
1	86	
2	93	
3	88	
4	89	
5	92	
6	94	
7	91	
8	93	
9	96	
10	97	
11	93	
12	95	

Calculate forecast:

 Σ Actual - Forecast

n

MAD = -

F(4) = [A(3)+A(2)+A(1)]/3F(4) = [88+93+86]/3 = 89.0

F(5) = [A(4)+A(3)+A(2)]/3F(5) = [89+88+93]/3 = 90.0

F(12) = [A(11)+A(10)+A(9)]/3

F(12) = [93+97+96]/3 = 95.33

Note that there are a total of 9 forecasts for this data (n = 9)

$$MSE = \frac{\Sigma(Forecast \, errors)^2}{n}$$

$$MAPE = \frac{\sum_{i=1}^{n} 100 |Actual_i - Forecast_i| / Actual_i}{n}$$

Period	Sales (A)	MA(3)	Error
1	86		
2	93		
3	88		
4	89	<mark>89.00</mark>	0.00
5	92	90.00	2.00
6	94	89.67	4.33
7	91	91.67	-0.67
8	93	92.33	0.67
9	96	92.67	3.33
10	97	93.33	3.67
11	93	95.33	-2.33
12	95	<mark>95.33</mark>	-0.33
	n =	9	

Calculate forecast errors:

Error = A - FError(4) = [A(4) - F(4)]Error(4) = [89.0 - 89.0] = 0.0

Error(12) = [A(12) - F(12)]Error(12) = [95.0 - 95.33] = -0.33

$$MSE = \frac{\Sigma (Forecast \, errors)^2}{n}$$

$$MAD = \frac{\Sigma |Actual - Forecast|}{n}$$

$$MAPE = \frac{\sum_{i=1}^{n} 100 |Actual_i - Forecast_i| / Actual_i}{n}$$

Operations & Supply Chain

Period	Sales (A)	MA(3)	Error	Error ^2
1	86			
2	93			
3	88			
4	89	89.00	0.00	0.00
5	92	90.00	2.00	<mark>4.00</mark>
6	94	89.67	4.33	18.78
7	91	91.67	-0.67	0.44
8	93	92.33	0.67	0.44
9	96	92.67	3.33	11.11
10	97	93.33	3.67	13.44
11	93	95.33	-2.33	5.44
12	95	95.33	-0.33	0.11
	n =	9		<mark>53.78</mark>
				<mark>5.98</mark>
				MSE

Calculate error² and use to determine MSE:

Operations & Supply Chain

$$Error^2(4) = 0.0^2 = 0.0$$

$$Error^{2}(5) = 2.0^{2} = 4.0$$

 $Error^{2}(12) = (-0.33)^{2} = 0.11$

 $\Sigma(\text{errors})^2 = \text{Error}^2(4) + \text{Error}^2(5) + \dots \text{Error}^2(12)$

 $\Sigma(\text{errors})^2 = 0.0 + 4.0 + ... + 0.11$

 $\Sigma(errors)^2 = 53.78$

MSE = $[\Sigma(errors)^2] / n$ MSE = 53.78 / 9 = 5.98

$$MSE = \frac{\Sigma (Forecast \, errors)^2}{n}$$

$$MAD = \frac{\Sigma |Actual - Forecast|}{n}$$

$$MAPE = \frac{\sum_{i=1}^{n} 100 |Actual_i - Forecast_i| / Actual_i}{n}$$

Period	Sales (A)	MA(3)	Error	Error ^2	Abs Error	
1	86					Calculate IErrorI [=Abs(Error)]
2	93					and use to determine MAD:
3	88					AbsError(4) = Abs(0.0) = 0.0
4	89	89.00	0.00	0.00	0.00	
5	92	90.00	2.00	4.00	2.00	AbsError(5) = Abs(2.0) = 2.0
6	94	89.67	4.33	18.78	4.33	AbsError(12) = Abs(-0.33) = 0.33
7	91	91.67	-0.67	0.44	0.67	
8	93	92.33	0.67	0.44	0.67	Σ (Abs Errors) = AbsError(4) +
9	96	92.67	3.33	11.11	3.33	AbsError (5) + AbsError (12)
10	97	93.33	3.67	13.44	3.67	Σ (AbsErrors) = 0.0 + 2.0 ++
11	93	95.33	-2.33	5.44	2.33	
12	95	95.33	-0.33	0.11	0.33	0.33
						Σ (AbsErrors) = 17.33
	n =	9		53.78	17.33	
				5.98	1.93	$MAD = [\Sigma(AbsErrors)] / n$
				MSE	MAD	MAD = 17.33 / 9 = 1.93

$$MSE = \frac{\Sigma (Forecast \, errors)^2}{n}$$

$$MAD = \frac{\Sigma |Actual - Forecast|}{n}$$

$$MAPE = \frac{\sum_{i=1}^{n} 100 |Actual_i - Forecast_i| / Actual_i}{n}$$

Operations & Supply Chain

						_ /	
						(Abs	
Period	Sales (A)	MA(3)	Error	Error ^2	Abs Error	Error/A)*100	2
1	86						
2	93						
3	88						
4	89	89.00	0.00	0.00	0.00	0.00	
5	92	90.00	2.00	4.00	2.00	2.17	
6	94	89.67	4.33	18.78	4.33	4.61	
7	91	91.67	-0.67	0.44	0.67	0.74	
8	93	92.33	0.67	0.44	0.67	0.72	
9	96	92.67	3.33	11.11	3.33	3.47	
10	97	93.33	3.67	13.44	3.67	3.78	
11	93	95.33	-2.33	5.44	2.33	2.51	
12	95	95.33	-0.33	0.11	0.33	0.35	
	n =	9		53.78	17.33	<mark>18.34</mark>	
				5.98	1.93	2.04	
				MSE	MAD	MAPE	

Calculate [Abs(Error)/A] *100 and use to determine MAPE: [AbsError(4)/A(4)]*100 = = [0.0/89]*100 = 0.0[AbsError(12)/A(12)]*100 = [0.33/95]*100 = 0.35 Σ [Abs Errors/A]*100 = [AbsError(4)/A(4)]*100 + [AbsError (12)/A(12)]*100 Σ [AbsErrors/A]*100 = 0.0 +

2.17 + ... + 0.35 = 18.34

 $MAPE = \Sigma(AbsErrors/A)*100 / n$

 $\sum_{i=1}^{n} 100 |\text{Actual}_i - \text{Forecast}_i| / \text{Actual}_i$

п

MAPE = 18.34 / 9 = 2.04

MAPE = $\frac{i=1}{2}$

$$MSE = \frac{\Sigma(Forecast \, errors)^2}{n}$$

$$MAD = \frac{\Sigma |Actual - Forecast|}{}$$

Forecast Error Solved Problem

- Develop:
 - 1. Three-period moving average forecast
 - 2. Four-period movingaverage forecast
 - 3. Exponential smoothing forecast with $\alpha = 0.5$
- Compute the MAD, MAPE, and MSE for each of the three forecasts
- Which method provides a better forecast?

Period	Sales (A)
1	86
2	93
3	88
4	89
5	92
6	94
7	91
8	93
9	96
10	97
11	93
12	95

Forecast Error Solved Problem: MA(4)

	Period	Sales (A)	MA(4)	Error	Error ^2	Abs Error	(Abs Error/A)*100	
	1	86						
	2	93						
	3	88						
	4	89						
	5	92	89.00	3.00	9.00	3.00	3.26	
	6	94	90.50	3.50	12.25	3.50	3.72	
	7	91	90.75	0.25	0.06	0.25	0.27	
	8	93	91.50	1.50	2.25	1.50	1.61	
	9	96	92.50	3.50	12.25	3.50	3.65	
	10	97	93.50	3.50	12.25	3.50	3.61	
	11	93	94.25	-1.25	1.56	1.25	1.34	
	12	95	94.75	0.25	0.06	0.25	0.26	
		n =	8		49.69	16.75	17.73	
					6.21	2.09	2.22	
					MSE	MAD	MAPE	
Note that there are a total of 8 forecasts for this data $(n = 8)$				MAD and	able to calculate d MAPE, similar	to MA(3)		
MSI	$MSE = \frac{\Sigma(Forecast errors)^2}{MAD} = \frac{\Sigma Actual - \Sigma }{MAD} = \frac{\Sigma }{MAD}$				- Forecast n	MAPE =	$=\frac{\sum_{i=1}^{n} 100 \text{Actual}_{i} - \text{Forec}_{i} }{n}$	$\operatorname{ast}_{i} / \operatorname{Actual}_{i}$

Forecast Error Solved Problem

- Develop:
 - 1. Three-period moving average forecast
 - 2. Four-period movingaverage forecast
 - 3. Exponential smoothing forecast with $\alpha = 0.5$
- Compute the MAD, MAPE, and MSE for each of the three forecasts
- Which method provides a better forecast?

Period	Sales (A)
1	86
2	93
3	88
4	89
5	92
6	94
7	91
8	93
9	96
10	97
11	93
12	95

Forecast Error Solved Problem: Exponential Smoothing ($\alpha = 0.5$)

Sales (A) ES (0.5) Period 86.00 86 1 2 93 86.00 3 88 89.50 4 89 88.75 5 92 88.88 6 94 90.44 7 91 92.22 8 93 91.61 9 96 92.30 10 97 94.15 11 93 95.58 12 95 94.29 12 n =

n

$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

Operations & Supply Chain

Note: If starting forecast is not given, assume F1=A1

F(1) = A(1) since no starting forecast given

F(1) = 86.0

F(12) = 94.29

$$F(2) = F(1) + 0.5[A(1) - F(1)]$$

$$F(2) = 86.0 + 0.5[86.0 - 86.0] = 86.0$$

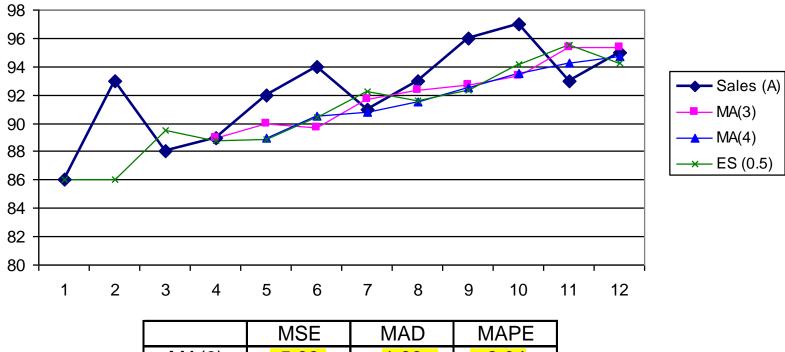
$$F(3) = F(2) + 0.5[A(2) - F(2)]$$

$$F(3) = 86.0 + 0.5[93.0 - 86.0] = 89.5$$

$$F(12) = F(11) + 0.5[A(11) - F(11)]$$

MAPE = $\frac{\angle}{i=1}$

$$MSE = \frac{\Sigma(Forecast \, errors)^2}{n} \qquad MAD = \frac{\Sigma|Actual - Forecast|}{n}$$


4-41

 $\sum_{i=1}^{n} 100 |\text{Actual}_{i} - \text{Forecast}_{i}| / \text{Actual}_{i}$

Forecast Error Solved Problem: Exponential Smoothing ($\alpha = 0.5$)

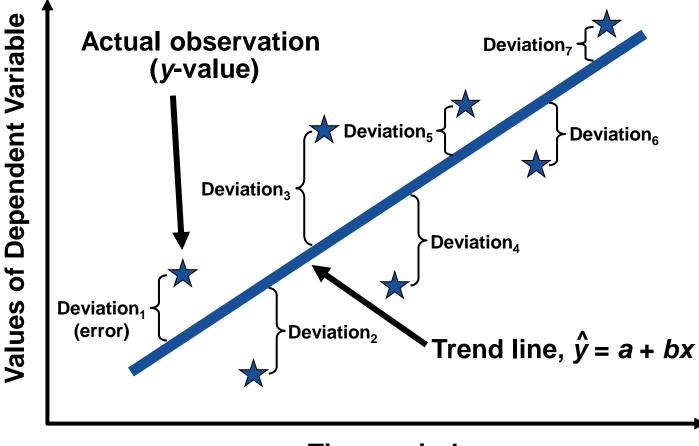
	Period	Sales (A)	ES (0.5)	Error	Error ^2	Abs Error	(Abs Error/A)*100	
	1	86	86.00	0.00	0.00	0.00	0.00	
	2	93	86.00	7.00	49.00	7.00	7.53	
	3	88	89.50	-1.50	2.25	1.50	1.70	
	4	89	88.75	0.25	0.06	0.25	0.28	
	5	92	88.88	3.13	9.77	3.13	3.40	
	6	94	90.44	3.56	12.69	3.56	3.79	
	7	91	92.22	-1.22	1.49	1.22	1.34	
	8	93	91.61	1.39	1.93	1.39	1.49	
	9	96	92.30	3.70	13.66	3.70	3.85	
	10	97	94.15	2.85	8.11	2.85	2.94	
	11	93	95.58	-2.58	6.64	2.58	2.77	
	12	95	94.29	0.71	0.51	0.71	0.75	
		n =	12		106.10	27.89	<u>29.85</u>	
					8.84	2.32	2.49	
					MSE	MAD	MAPE	
Note th	nat there	<mark>are a tota</mark>	l of 12	You sh	ould be a	ble to cal	culate	
Forecasts for this data ($n = 12$) MSE, MAD and MAPE, similar to MA(3) and MA(4)					nd MA(4)			
	Σ (Forecas	st errors) ²	MAD =	Σ Actual -	Forecast		$\sum_{i=1}^{100}$ Actual _i - Forecas	$ st_i /Actual_i$
MSE =	=		MAD =	- <u> </u>		MAPE = -	n	

Forecast Error Solved Problem: Results

MA(3)	5.98	<mark>1.93</mark>	2.04
MA(4)	6.21	2.09	2.22
ES (0.5)	8.84	2.32	2.49

Conclusion: Based on these error metrics (MAD, MSE, MAPE), the 3-month moving average is the best method among the three for <u>this data set</u>

Trend Projections


- <u>Trend projection</u>: a time-series forecasting method that fits a trend line to a series of historical data points and then *projects* the line into the future for forecasts
- Linear trends can be found using the least squares technique

$$\hat{y} = a + bx$$

where $\hat{y} = ("y hat")$ computed value of the variable to be predicted (dependent variable)

- *a* = *y*-axis intercept
- **b** = slope of the regression line
- x = the independent variable (in this case is time)

Least Squares Method

Time period

Trend Projections

- Statisticians have developed equations that we can use to find the values of a and b for any regression line
- The slope (b) and the y intercept (a) can be calculated with the following equations:

$$b = \frac{(\Sigma x y) - (n)(\overline{x})(\overline{y})}{(\Sigma x^2) - (n)(\overline{x})^2} \quad a = \overline{y} - (b)\overline{x}$$

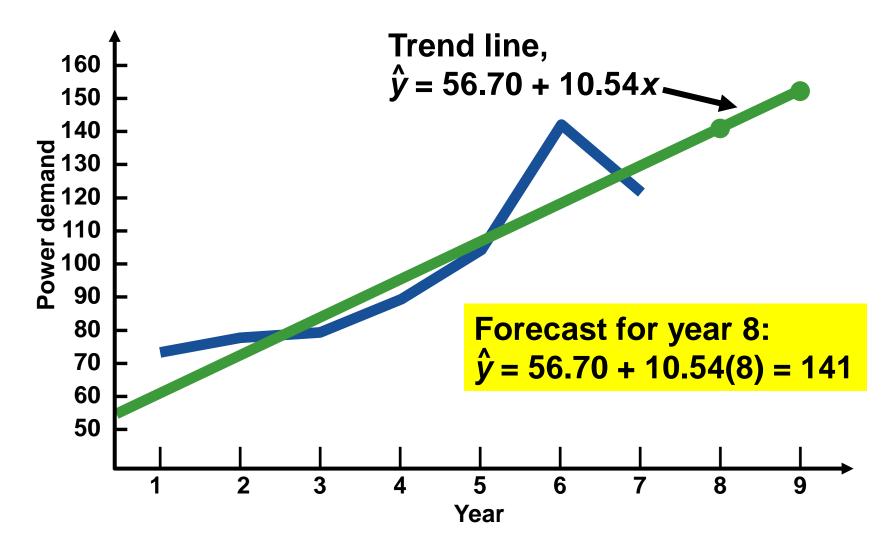
where b = slope of the regression line

- x = known values of the independent variable
- y = known values of the dependent variable
- \overline{x} = ("x-bar") average of the x-values
- $\overline{y} = ("y-bar")$ average of the y-values
- n = number of data points or observations
- *a* = *y*-axis intercept
- We can express the line with the equation:

$$\hat{y} = a + bx$$

• The demand for electric power at N.Y. Edison over the past 7 years is shown in the following table, in megawatts. The firm wants to forecast next year's demand by fitting a straight-line trend to these data.

	Electrical Power
<u>Year</u>	Demand (megawatts)
1	74
2	79
3	80
4	90
5	105
6	142
7	122


Year	Time Period (<i>x</i>)	Electrical Power Demand (y)
1	1	74
2	2	79
3	3	80
4	4	90
5	5	105
6	6	142
7	_7_	122
n=7	$\sum x = 28$	$\sum y = 692$
	x = 28/7	$\bar{y} = 692/7$
	$\overline{x} = 4$	$\overline{y} = 98.86$

Year	Time Period (<i>x</i>)	Electrical Powe Demand (y)	r <i>x</i> ²
1	1	74	1
2	2	79	4
3	3	80	9
4	4	90	16
5	5	105	25
6	6	142	36
7	7	122	49
n=7	$\sum x = 28$	$\sum y = 692$	$\sum x^2 = 140$
	$\overline{x} = 4$	$\bar{y} = 98.86$	

Year	Time Period (<i>x</i>)	Electrical Power Demand (y)	x ²	хy		
1	1	74	1	74		
2	2	79	4	158		
3	3	80	9	240		
4	4	90	16	360		
5	5	105	25	525		
6	6	142	36	852		
7	_7	<u>122</u>	49	<u>854</u>		
n=7	$\sum x = 28$	$\sum y = 692$	$x^2 = 140$	$\sum xy = 3,063$		
	$\overline{x} = 4$	$\overline{y} = 98.86$	-			
b=	$\frac{(\sum xy) - (n)(\overline{x})}{(\sum x^2) - n(\overline{x})}$		<u> </u>	<mark>10.54</mark>		
$a = \overline{y} - b\overline{x} = 98.86 - 10.54(4) = 56.70$						
	Trend I	ine = y = a + bx = 5	6.70 + 10.54 <i>x</i>	r		

4-50

Least Squares Requirements

- Always plot the data to insure a linear relationship
- Do not predict time periods far beyond the database
- Deviations around the least squares line are assumed to be random

Regression Analysis

- <u>Regression analysis:</u> a straight-line mathematical model to describe the functional relationships between independent and dependent variables
 - The dependent variable will still be y but the independent variable (x) need no longer be *time*

$$\hat{y} = a + bx$$

- where $\hat{y} = ("y hat")$ computed value of the variable to be predicted (dependent variable)
 - *a* = *y*-axis intercept
 - *b* = slope of the regression line
 - x = the independent variable (not time)
- MS Excel provides a very simple tool to find the best-fitting regression model for a time series by selecting the "Add Trend line" option

Nodel Construction Company renovates old homes in West Bloomfield, Michigan. Over time, the company has found that its dollar volume of renovation work is dependent on the West Bloomfield area payroll. Management wants to establish a mathematical relation to help predict sales.

Area Payroll (in \$ billions), x	Nodel's Sales (in \$ millions), y
1.0	2.0
3.0	3.0
4.0	2.5
2.0	2.0
1.0	2.0
7.0	3.5

Operations & Supply Chain

University

Steps:

- 1. Calculate: \mathbf{n} , $\Sigma \mathbf{x}$, $\Sigma \mathbf{y}$, $\Sigma \mathbf{xy}$, $\Sigma \mathbf{x^2}$
- 2. Substitute into equations to solve for a and b
- 3. Substitute a and b into regression equation
- 4. Use regression equation to forecast

Linear Regression Forecasting Solution

Ste	eps:	n	Area Payroll (in \$ billions), x	Nodel's Sales (in \$ millions), y	x^2	ху	
1.	Calculate: n, Σx , Σy , Σxy , Σx^2	1	1.0	2.0	1.0	2.0	
2.	Substitute into equations to	2	3.0	3.0	9.0	9.0	
	solve for a and b	3	4.0	2.5	16.0	10.0	
3.	Substitute a and b into	4	2.0	2.0	4.0	4.0	
	regression equation	5	1.0	2.0	1.0	2.0	
4.	Use regression equation to	6	7.0	3.5	49.0	24.5	
	forecast	n=6	Σx = 18.0	Σ γ= 15.0	$\Sigma x^2 = 80$	Σxy = 51.5]

$$\bar{x} = \Sigma x/n = 18.0/6 = 3.0, \ \bar{y} = \Sigma y/n = 15.0/6 = 2.5$$

$(\Sigma xy) - (n)(\bar{x})(\bar{y})$ 51.5 - 6(3)) <u>(2.5)</u>
b = $(\Sigma x^2) - (n)(\bar{x})^2$ = $80 - 6(3)$	b = 0.25
a =	a = 1.75
So the linear regression equation is:	$\hat{y} = a + bx = 1.75 + 0.25x$
	Or: Sales = 1.75 + 0.25 (payroll)

If the Chamber of Commerce predicts payroll to be \$6B, estimated sales:

Sales (millions) = 1.75 + 0.25 (6) = 1.75 + 1.50 = 3.25 or \$3,250,000

Steps to use Excel:

1. Open new spreadsheet and input x and y data

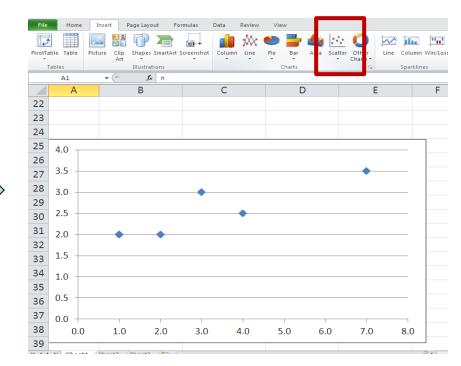
- Insert: Chart
- Select chart type: Scatter
- Data indicates fairly linear relationship

2. "Select" the plotted data, right click and select "Add Trendline"

- Select: "Linear"
- Select Options: Display equation and R-squared value

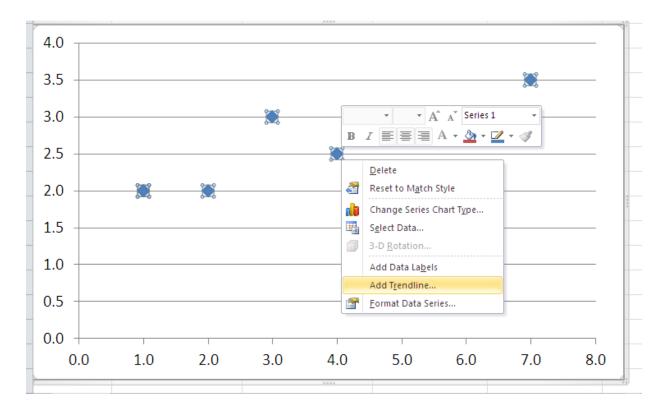
3.Calculate forecast and evaluate correlation

Operations & Supply Chain


Universitv

Plot Data and Create Scatter Diagram

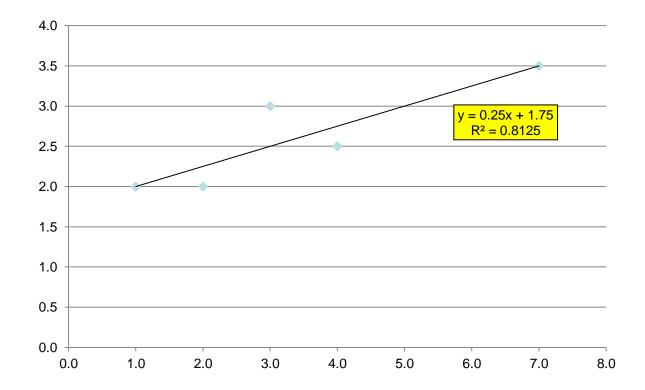
- 1. Open new spreadsheet and input x and y data
 - Insert: Chart
 - Select chart type: Scatter
 - Data indicates fairly linear relationship '
 - If it is not linear, should not use this method


Payroll, x	Sales, y	
1.0	2.0	
3.0	3.0	
4.0	2.5	
2.0	2.0	
1.0	2.0	
7.0	3.5	

Add Trendline and Display Output

Operations & Supply Chain University

- 2. "Select" the plotted data, right click and select "Add Trendline"
 - Select: "Linear"
 - Select Options: Display equation and R-squared value



Calculate Forecast and Evaluate Correlation

- Result: y = 0.25x + 1.75, $R^2 = 0.8125$
- If payroll is predicted to be \$6B, estimated sales:

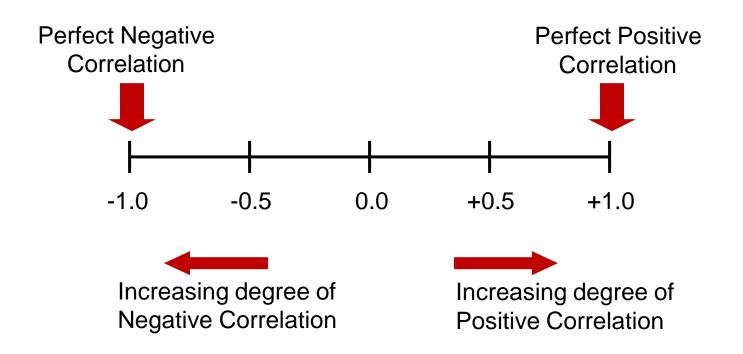
$$y = 0.25x + 1.75 \rightarrow y = 0.25$$
 (6) + 1.75 = \$3.25 M

Correlation Coefficient (r) and Coefficient of Determination (r²)

Operations & Supply Chain University

Correlation Coefficient (r):

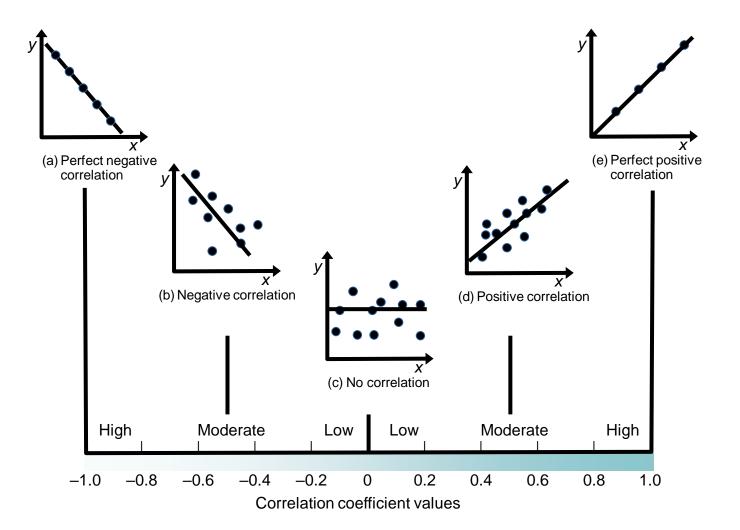
- A measure of the strength of the linear relationship between independent and dependent variables
 - Varies between -1.00 and + 1.00


Coefficient of Determination (r²):

- The percentage of the variation in the dependent variable that results from the independent variable
 - Varies between 0 and 1

Correlation Coefficient

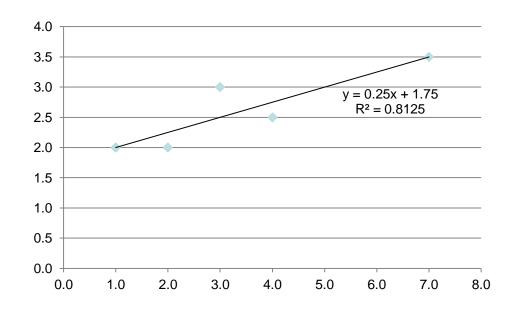
Correlation Coefficient (r):


- A measure of the strength of the linear relationship between independent and dependent variables
- Varies between -1.00 and + 1.00

Operations & Supply Chain

University

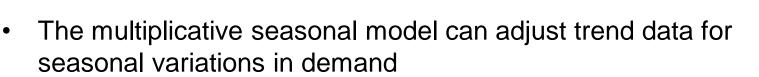
Correlation Coefficient (r)


Calculate Forecast and Interpret Correlation

• If payroll is predicted to be \$6B, estimated sales:

 $y = 0.25x + 1.75 \rightarrow y = 0.25$ (6) + 1.75 = \$3.25 M

• R² = 0.8125what does this mean???


Coefficient of Determination (r^2) : The percentage of the variation in the dependent variable that results from the independent variable. The r^2 varies between 0 and 1.

With R² = 0.8125, it indicates a strong dependence

<u>Correlation Coefficient (r):</u> A measure of the strength of the linear relationship between independent and dependent variables

R = 0.9014...therefore, strong positive correlation

Seasonal Variations In Data

- Steps in process
 - 1. Find *average historical demand* for each season
 - 2. Compute the *average demand* over all seasons
 - 3. Compute a *seasonal index* for each season
 - 4. Estimate next year's total demand
 - Divide this estimate of total demand by the number of seasons, then multiply it by the seasonal index for that season → this provides the seasonal forecast

Operations & Supply Chain

University

 A Des Moines distributor of Sony laptop computers wants to develop monthly indices for sales. Data from the past three years are shown below:

Month	Demand					
wonth	Year 1	Year 2	Year 3			
Jan	80	85	105			
Feb	70	85	85			
Mar	80	93	82			
Apr	90	95	115			
May	113	125	131			
Jun	110	115	120			
Jul	100	102	113			
Aug	88	102	110			
Sep	85	90	95			
Oct	77	78	85			
Nov	75	82	83			
Dec	82	78	80			

 A Des Moines distributor of Sony laptop computers wants to develop monthly indices for sales. Data from the past three years are shown below:

Month		Average			
WOTUT	Year 1 Year 2		Year 3	Yr 1-3	
Jan	80	85	105	90	
Feb	70	85	85	80	
Mar	80	93	82	85	
Apr	90	95	115	100	
May	113	125	131	123	
Jun	110	115	120	<mark>115</mark>	
Jul	100	102	113	105	
Aug	88	102	110	100	
Sep	85	90	95	90	
Oct	77	78	85	80	
Nov	75	82	83	80	
Dec	82	78	80	80	

Jan Average Y1-Y3 = (JanY1 + JanY2 + JanY3)/3= (80 + 85 + 105)/3 = 90

Feb Average Y1-Y3 = (FebY1+ FebY2 + FebY3)/3 = (70 + 85 + 85)/3 = 80

Average of Monthly Average

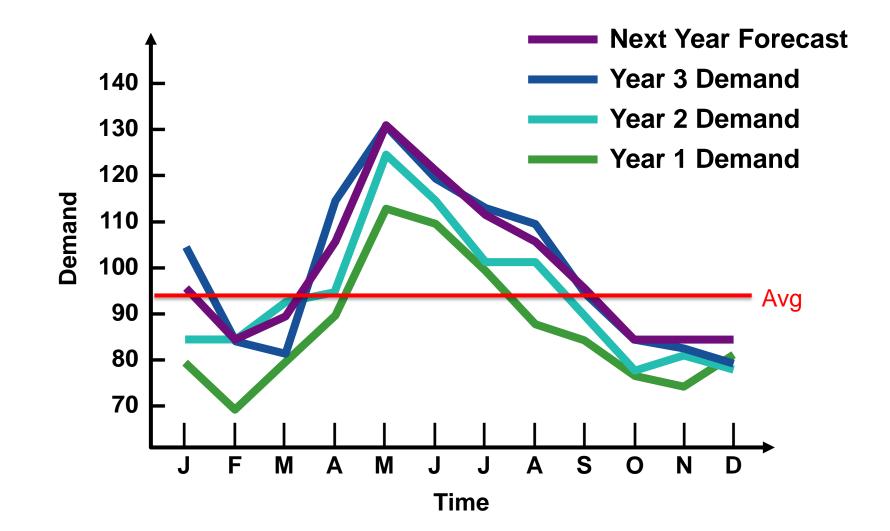
- = (Jan Y1-Y3 + Feb Y1-Y3 + ...
- + Dec Y1-Y3)/12

= 1128 / 12 = 94

 A Des Moines distributor of Sony laptop computers wants to develop monthly indices for sales. Data from the past three years are shown below:

Month		Demand	Average	Average	
wonth	Year 1 Year 2 Yea		Year 3	Yr 1-3	Monthly
Jan	80	85	105	90	94
Feb	70	85	85	80	94
Mar	80	93	82	85	94
Apr	90	95	115	100	94
May	113	125	131	123	94
Jun	110	115	120	115	94
Jul	100	102	113	105	94
Aug	88	102	110	100	94
Sep	85	90	95	90	94
Oct	77	78	85	80	94
Nov	75	82	83	80	94
Dec	82	78	80	80	94

From prior calculation, average of monthly average = 94 per month


- Operations & Supply Chain University
- A Des Moines distributor of Sony laptop computers wants to develop monthly indices for sales. Data from the past three years are shown below:

						Juli Ocasoliai	
Marath		Demand		Average	Average	Seasonal	Index
Month	Year 1	Year 2	Year 3	Yr 1-3	Monthly	Index	= JanAvg/
Jan	80	85	105	90	94	0.957	MonthlyAvg
Feb	70	85	85	80	94	0.851	= 90 / 94 = 0.957
Mar	80	93	82	85	94	0.904	Feb Seasonal
Apr	90	95	115	100	94	1.064	
May	113	125	131	123	94	1.309	
Jun	110	115	120	115	94	1.223	= FebAvg/
Jul	100	102	113	105	94	1.117	MonthlyAvg
Aug	88	102	110	100	94	1.064	= 80 / 94 = 0.851
Sep	85	90	95	90	94	0.957	Jul Seasonal
Oct	77	78	85	80	94	0.851	Index
Nov	75	82	83	80	94	0.851	= JulAvg/
Dec	82	78	80	80	94	0.851	MonthlyAvg
							= 105 / 94 = 1.117

 If we expected annual demand for next year for computers to be 1150 units, we would use these seasonal indices to forecast the monthly demand (→1150/12=95.83)

 Forecast = Monthly Demand x Seasonal Index 						F(Jan)	
Month	Demand			Average	verage Average S	Seasonal	=(95.83)(0.957)
wonun	Year 1	Year 2	Year 3	Yr 1-3	Monthly	Index	=91.7 = 92
Jan	80	85	105	90	94	0.957	
Feb	70	85	85	80	94	0.851	F(Feb)
Mar	80	93	82	85	94	0.904	=(95.83)(0.851)
Apr	90	95	115	100	94	1.064	=81.6 = 82
May	113	125	131	123	94	1.309	
Jun	110	115	120	115	94	1.223	F(Jul)
Jul	100	102	113	105	94	1.117	=(95.83)(1.117)
Aug	88	102	110	100	94	1.064	=107
Sep	85	90	95	90	94	0.957	
Oct	77	78	85	80	94	0.851	
Nov	75	82	83	80	94	0.851	
Dec	82	78	80	80	94	0.851	

